2022-10-11
举办单位:数学科学学院
负责人姓名:刘迪
电话:13546325367
形式:线上学术报告
活动主题:centre-augmented l2-type regularization for subgroup learning
内容摘要:
the existing methods for subgroup analysis can be roughly divided into two categories: finite mixture models (fmm) and regularization methods with an l1 -type penalty. in this paper, by introducing the group centres and l2 -type penalty in the loss function, we propose a novel centre-augmented regularization (car) method; this method can be regarded as a unification of the regularization method and fmm and hence exhibits higher efficiency and robustness and simpler computations than the existing methods. particularly, its computational complexity is reduced from the $o(n^2)$ of the conventional pairwise-penalty method to only $o(nk)$, where n is the sample size and k is the number of subgroups. the asymptotic normality of car is established, and the convergence of the algorithm is proven. car is applied to a dataset from a multicenter clinical trial: buprenorphine in the treatment of opiate dependence; a larger $r^2$ is produced and three additional significant variables are identified compared to those of the existing methods.
主讲人基本情况:
林华珍,西南财经大学教授,统计研究中心主任。国际数理统计学会ims-fellow,教育部**特聘教授,国家杰出青年科学基金获得者,国家百千万人才工程获得者,享受国务院政府特殊津贴专家。
主要研究方向为非参数方法、转换模型、生存数据分析、函数型数据分析、潜变量分析、时空数据分析。研究成果发表在包括国际统计学四大顶级期刊aos、jasa、jrssb、biometrika和计量经济学顶级期刊joe及jbes上。先后多次主持国家基金项目,包括国家杰出青年基金及自科重点项目。林华珍教授是国际ims-china、ibs-china及icsa-china委员,中国现场统计研究会数据科学与人工智能分会理事长,第九届全国工业统计学教学研究会副会长,中国现场统计研究会多个分会的副理事长。先后是国际统计学权威期刊《biometrics》、《scandinavian journal of statistics》、《journal of business & economic statistics》、《canadian journal of statistics》、 《statistics and its interface》、《statistical theory and related fields》的associate editor, 国内权威或核心学术期刊《数学学报》(英文)、《应用概率统计》、《系统科学与数学》、《数理统计与管理》编委会编委。
听众范围:数学科学学院师生
举办时间:2022年10月14日
举办地点:腾讯会议
报告类型:理科类