山大新闻网-亚博安卓下载

当前位置 亚博安卓下载-yb体育app官方下载 » 学术瞭望哨

学术瞭望哨

characterizations on graphs which achieve some upper bounds for their zero forcing number

2022-04-26 信息来源:腾讯会议

举办单位数学科学学院

负责人:林上为

电话13835184047

活动主题characterizations on graphs which achieve some upper bounds for their zero forcing number

形式学术报告

活动内容摘要let $g$ be a connected graph of order $n$ with vertex set $v(g)$. a set $s\subseteq v(g)$ is a zero forcing set of $g$ if initially the vertices in $s$ are colored black and the remaining vertices are colored white, and then forcing a white vertex to black if it is the only white neighbor of some black vertex, applying this step iteratively until all vertices of $g$ are black. the zero forcing number $z(g)$ of $g$ is defined as the minimum cardinality of a zero forcing set of $g$. in a recent work [theory appl. graphs 2(2) (2015) article 2] caro and pepper used a greedy algorithm to prove that $z(g)\leq \frac{(\delta-2)n-(\delta-\delta) 2}{\delta-1}$, where $\delta$, $\delta\geq 2$ are minimum degree, maximum degree of $g$, respectively. if $g$ is regular, i.e., $\delta=\delta$, this upper bound was characterized independently by gentner et al. and lu et al. in 2016. first, we completely characterize general graphs attained the upper bound, solving the question proposed by lu et al. on the other hand, $z(g)\leq n-g 2$, where $g$ is the girth of $g$. second, we slightly improved the bound and characterize connected graphs attained the improved bound.

主讲人基本情况徐守军,兰州大学数学与统计学院教授、副院长、博士生导师。2007年获得兰州大学博士学位。2008-2010年中科院数学与系统科学研究院从事运筹学方向博士后工作;多次到美国加州大学戴维斯分校计算机系和香港教育学院访问。研究兴趣主要在图论及组合最优化、计算机算法及离散数学等。在siam j discrete math、discrete appl. math、j. combin. optim.、australas. j. combin.等杂志上发表多篇学术论文,目前主持一项国家面上基金。

听众范围数学科学学院师生

举办时间2022430

举办地点腾讯会议581-512-864

报告类型理科类

新闻导航

山大要闻
图片新闻
教学科研
基层动态
网站地图