2022-04-26 信息来源:腾讯会议
举办单位:数学科学学院
负责人:林上为
电话:13835184047
活动主题:maximum bisections of graphs without cycles of length 4
形式:学术报告
活动内容摘要:a bisection of a graph is a bipartition of its vertex set in which the number of vertices in the two parts differ by at most 1, and its size is the number of edges which go across the two parts. let $c_k$ be a cycle of length $k$, and let $g$ be a $c_4$-free graph with $n$ vertices, $m$ edges and vertex degrees $d_1, \ldots, d_n$. lin and zeng proved that if $g$ does not contain $c_6$ and has a perfect matching, then $g$ admits a bisection of size at least $m/2 \omega\left(\sum_{i=1}^{n}\sqrt{d_i}\right)$. this extends a celebrated bound given by shearer on max-cut of triangle-free graphs. in this paper, we establish a similar result by replacing $c_6$ with $\theta(1, 2, 4)$, $\theta(2, 3, 3)$ and $\theta(3, 3, 3)$, where $\theta(\ell_1,\ell_2,\ell_3)$ denotes the graph consisting of three internally disjoint paths of length $\ell_1$, $\ell_2$ and $\ell_3$, respectively, each with the same endpoints. we also note that the bound is tight for certain polarity graphs.
主讲人基本情况:侯建锋,福州大学数学与统计学院教授、副院长、博士生导师。2009年7月毕业于山东大学数学学院,获理学博士学位。2011年度全国优秀博士学位论文提名奖,2011年度福建省自然科学基金杰出青年项目获得者,2020年入选福建省“雏鹰计划”,2011年入选青年长江学者,主持国家自然科学基金4项,参与重点项目1项。主要从事图与超图的划分和图染色方面的研究,解决了bollobas(英国皇家学会会员、欧洲科学院院士)和scott(剑桥大学教授)提出的关于图公平划分的多个猜想和公开问题,在j. combin. theory ser. a (b)、random struct. algor.、combin. probab. comput.、siam j. discrete math.等专业权威期刊发表sci检索学术论文50余篇。
听众范围:数学科学学院师生
举办时间:2022年4月30日
举办地点:腾讯会议(219-628-633)
报告类型:理科类